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ABSTRACT

In the first of the coupled integro-differential equations satisfied by
the Green's functions of the many body system the Hartree-Fock approxima-
tion is made for the two particle Green's function. The resulting equation is
written in a mixed position-angular momentum representation in such a way
that use may be made of whatever empirical information about the angular
momentum of the system is available.

In the mixed position-angular momentum representation the one
particle Green's function appears as a sum of terms each of which corres-
ponds to a different value of the angular momentum. For the principal groups
of the periodic table in which the angular momentum of the atom is carried
by either one,. two or three electrons added to or missing from a closed shell
the appropriate terms in the expression for the one particle Green's function
are identified. The first of the coupled integro-differential equations for the
Green's functions is then solved to lowest order in h in the manner indicated
by Baraff and Borowitz. The result is a modified Thomas-Fermi model that
differs from the previous results of Sessler and Foley for the same problem.

The Sessler-Foley modification of the Thomas-Fermi atom is re-
derived in the spirit of the cranking model for the nucleus by spinning the
potential. The present formalism is seen to lead to the Sessler-Foley re-
sult in the limit of many particles carrying the angular momentum. How-
ever, the region of validity of the cranking model in the nucleus lies far re-
moved from the magic numbers whece there are many nucleons outside a
spherical core. Thus the Sessler-Foley result may be interpreted as a kind
of cranking model of the atom.

In contrast to the previous work the present formalism yields a sign
change for the quadrupole coupling constant on passing through closed shells
and calculated values for the quadrupole coupling constant of the halogens are
seen to be within an order of magnitude of the accepted values.
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I. INTRODUCTION

The method of Thomas i and Fermi 2 allows one to calculate a charge

distribution for an atom having no net angular momentum. This is usually

done by assuming that the electrons in the atom constitute a degenerate Fermi

gas at zero temperature, thereby allowing one to obtain a relationship between

the Fermi momentum and the spatial density. The potential energy is expressed

in terms of the electron density and finally the total energy is varied

subject to the condition that the number of electrons be fixed. The result

of this variation in conjunction with Poisson's equation yields a second

order non-linear differential equation for the self-consistent potential in

the atom. The electron density may then be recovered from the solution for

-the potential.

The Thomas-Fermi equation as ordinarily derived describes an atom

with vanishing angular momentum since the assumed a priori density in phase

space is spherically symmetric. Sessler and Foley3 have extended the

Thomas-Fermi model to include non-vanishing angular momentum in the hope of

obtaining a model that would include angular "correlations". This was done

in order to deal with certain atomic properties that are particularly sensitive

to the angular distribution of electrons in the atom, in particular the

quadrupole coupling constant.

In order to insert an angular momentum into the statistical atom

Sessler and Foley introduce a departure from spherical symmetry in phase space

by displacing the Fermi sphere from the origin by a position dependent amount.
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There is, therefore, a net linear momentum at each point in the atom and an

angular momentum may now be introduced in what is essentially a classical

fashion. Once again the energy of the atom is expressed in terms of the

electron density, and the total energy is varied subject to the constraints

that both the number of electrons and the angular momentum be constant.

In Section II we shall show that the SesslgiC' oiey modification

of the Thomas-Fermi model may be derived in an alternative fashion, i.e.

by rotating the nuclear potential while leaving the Fermi sphere centered

at the origin in momentum space. However, this is precisely the way in

which the "cranking model" of the nucleus first introduced by Inglis4
- 5

to explain low lying nuclear rotational levels is constructed. Indeed,

many of the features of the cranking model have direct analogues in the

Sessler-Foley modification of the Thomas-Fermi model. The correct value

of the angular momentum is obtained through a suitable adjustment of the

angular velocity of the potential. This procedure, however, does not allow

for a proper description of the symmetries of the spatial charge distribution

that are associated with a quantum mechanical angular momentum. The model,

therefore, is not able to yield any of the properties of the atom that

vary in the characteristic way of the periodic table. The quadrupole

coupling constant, for example, as calculated by Sessler and Foley is always

of the same sign and has the same z dependence independent of the value of

the angular momentum.

In treating a quantum mechanical system statistically, one sets up
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an ensemble of systems the average properties of which are taken to be

reasonable estimates of the behavior of the actual system of interest.

The representative ensemble is chosen so as to agree with our partial

knowledge of the system of interest and is otherwise constructed in

accordance with some postulate as to the a priori likelihood of different

possibilities.

In the case of the statistical atom the partial information used

in the Sessler and Foley work consists of a knowledge of the energy and

the total angular momentum. All possible states consistent with the energy

and angular momentum of the system are assumed equally probable. However,

one has available a fair amount of qualitative information as to the

internal distribution of angular momentum in the atom which could be used

to restrict further the volume in phase space available to the system.

In fact for the elements in the principal groups the angular momentum is

known to be carried by either one, two or three electrons either added to

or missing from a spherical core.

We have, therefore, addressed ourselves once again to the problem

of attaining an approximate description of the atom that preserves in

addition to the energy some other quantum number, in particular the value

of the total angular momentum. In order to go beyond the work of Sessler

and Foley we shall make use of the fact that we are not in total ignorance

as to how the angular momentum is distributed within the atom. Including

this information enables us to obtain atomic properties that vary in the

characteristic fashion of the periodic table.
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We shall also show, within the context of the present formalism,

that in the limit of no knowledge of the internal distribution of angular

momentum the Sessler-Foley result remains as the only thing one can say about

the statistical atom with angular momentum.

The present work utilizes the approach of Baraff and Borowitz6 in

applying the Green's function techniques of the many body problem to the atom.

In their work a mixed position momentum representation of the one particle

Green's function was expanded in powers of h . The lowest order term is

seen to lead to the Thomas-Fermi density and higher order terms yield both

the exchange and quantum corrections to the density. One of the attractive

features of the method is that no a priori assumptions are made about the

nature of the density in phase space.

In order to construct a formalism within the framework of which we

may derive a modified Thomas-Fermi model with non-vanishing angular momentum

we shall introduce in Section III a mixed position-angular momentum repre-

sentation of the one particle Green's function. This is accomplished

through the use of a mixed Fourier-Hankel transform. The transform and its

inverse are defined and the physical significance of the transform is

discussed.

In the mixed position-angular momentum representation the one

particle Green's function appears as a sum of terms each of which corresponds

to a different value of the angular momentum. One then attempts to identify

those terms that are significant in any given physical situation. In the



event that the angular momentum of the atom is due to one, two or three

electrons outside a spherically symmetric shell a form for the one particle

Green's function is obtained that yields the proper quantum mechanical

expectation value of the angular momentum. A modification of this form

allows one to discuss the case of one, two or three electrons missing from

a closed shell. In the Hartree-Fock approximation the first of the coupled

integro-differential equations satisfied by the Green's functions is

solved to lowest order in F and a modified Thomas-Fermi model is obtained.

On the other hand, if many electrons contribute to the angular

momentum it is shown that a different assumption about the form of the one

particle Green's function in the mixed position-angular momentum

representation must be made. The resulting equation for the electron

density in the atom in this case turns out to be the Sessler-Foley

modification of the Thomas-Fermi model. The quantum mechanical expectation

value of the angular momentum vanishes in this case. This is to be expected

since the Sessler-Foley model corresponds to the uniform rotation of a

rigid sphere.
7

In Section IV the present model is used to investigate the behavior

of the quadrupole coupling constant. The sign of the constant is shown to

be given correctly and the value of the constant is shown to increaso with

z in the case of the halogens. The calculated values are within an order of

magnitude of the accepted values.



II THE SESSLER-FOLEY AND CRANKING MODELS

In their work Sessler and Foley arrive at the conclusion that a

statistical atom with angular momentum rotates as a whole. This result is

consistent with a theorem proven by Landau and Lifshitz 8 that states that

the only macroscopic motions compatible with an equilibrium state of a

statistical system are translation with a uniform velocity and rotation

with uniform angular velocity about a fixed axis. This can be shown in

the following fashion:

Let the system be subdivided into small parts. Each part is to

be sufficiently large, however, that an entropy function may be defined

for it. Let mi, Pi and Ei denote the mass, momentum and energy of the

ith part of the system, respectively. The entropy of the system ' then

II. 1 S [ Si(Ei - p 2 )
i 2mi

In addition, for a closed system we have,

II. 2a Pi CONSTANT

II. 2b r x Pi CONSTANT

We now introduce the Lagrangian multipliers a and b and maximize

the entropy subject to the constraints that the momentum and angular

momentum of the system be conserved.
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The variation yields the result that for maximum entropy

I. 3 (-Fxr)
mi

where T is the temperature. We see, therefore, that the only macroscopic

motions consistent with a statistical system in equilibrium are linear

translation with velocity aT and uniform rotation with angular velocity bT.

This result depends on the fact that we have no knowledge of the

internal distribution of angular momenta; We know only its total value.

One might, therefore, anticipate a different result if one knew on empirical

grounds that the entire angular momentum of the system was carried by a

single particle. This, then, would correspond to a further restriction

of the volume in phase space available to the microcanonical ensemble. We

shall indeed find that one is led to different equations for the density

in the system when one inserts empirical conditions known to hold. Indeed,

even without the inserting of empirical information, a detailed treatment

allowing for internal degrees of freedom can be made leading for different

results than those illustrated above.
8a

It would therefore seem reasonable to find that the statistical

atom with only the value of the total angular momentum specified should

rotate rigidly as indeed was found by Sessler and Foley. These workers

introduced an angular momentum into the Thomas Fermi atom where it is

ordinarily absent by displacing the Fermi sphere in momentum space from

the origin by a position dependent amount D(r). This imparts a net linear
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momentum to each point in -the atom and a non-zero angular momentum is now

possible. The calculation is outlined briefly.

The kinetic energy is given by

11. 4 E k (2 r r 3  p f (2) fdr fdp (T+7l2

disp. sphere

2______ (p2+D2+27jTYf) I jd D__ __T Tj j- m-S 73 -ir
(2iFR17~ 2m =M 101ie PD 2

where the integral of p.D vanishes because of symmetry and the

Fermi momentum Pf is related to the density n(r) by

n(r) = P

The potential energy is given by

I. 6 Ep e2 Jdr' Jdr n(r)n('r') - e dr VN(r)T j - j - I 't__7T

where VN(r) is the nuclear potential.

The first constraint on the system is

11. 7 N = fn(r)dr number of electrons

and the second is

II. 8 Jh = f (rxD(r) )n(r)dr f rD(r)sin e n(r)dr

where Jh is the angular momentum of the atom and 5(r) has been chosen in the $

direction,
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One now introduces the Lagrangian multipliers X and V on the

conditions of angular momentum and particle number. Variation with respect

to D(r) yields

II. 9 D(r) -Xmr sin a

Variation with respect to n(r) in conjunction with Poisson's equation yields

the following equation for the potential in the atom;

II. 10 V24 = 4e2  [2m(4-p) + (Xmr sin 8 )2]3/2

where
II. lOa t(r) VN(r) - e n(r')dr' = potential at r

The quantity P corresponds to the chemical potential and vanishes

in the case of the neutral atom.

The form of the modified Thomas-Fermi equation II. 10 indicates

that the model describes a rigid sphere rotating with constant angular

velocity X, and the correct value of the angular momentum is obtained by

a suitable adjustment of the value of X. This, however, is a classical

treatment of the angular momentum. To begin with, the total angular

momentum is taken equal to the z component in the above derivation and

further, quantum mechanically it is meaningless to speak about an angular

momentum for a spherically symmetric system since the wave function of

such a system is invariant under rotation.

This modification of the Thomas-Fermi model may be derived in an

alternative fashion that is very much in the spirit of the cranking model

of the nucleus. This model was first introduced by Inglis in an attempt
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to explain the rotational levels that arise from the more or less rigid

rotation of nuclei. The derivation of the cranking model hinges on the

notion that the nucleons are in a potential well that is externally rotated.

We shall, therefore, attempt to rederive the Sessler-Foley modification

of Thomas-Fermi model by leaving the Fermi sphere centered at the origin

in momentum space, and rotating the nuclear potential well instead.

The kinetic energy of the atom is now given by

II. E 2 dr dp p2  1 dr Pf5
(2nh)3 - 7m hTJ 2(2i~3J )Sphere 10712

Rotating the nuclear potential well will have the effect of adding

a centrifugal term to the potential energy which becomes

II. 12 E = e2  drI dr n(r)n(r') - dr n(r) (eVN(r) - mr2w 2

2 2 Ir'nr 2

The energy density E' is related to the energy density E of the

non-rotating system by

II. 13 E' = E t n(r)mr
2w2

2

We may therefore consider the quantity

II. 14 [mr 2w]n(r)

as an angular momentum density. The integral of this density over the volume

of the atom is the total angular momentum which is to be conserved.



Introducing the Lagrangian multipliers X and p for the conditions

of conservation of angular momentum and particle number respectively we

obtain as the expression to be minimized

I 5/3 5/3
Id. is dr ( h2 ( 372) [n(r)] 5 e2  dr' n(r)n(r') - eVN(r)n(r) + mr2W2 n(r)

m 107 2  2 3r-r,- 2

+ A J dr n(r)mr2M + p fdr n(r)

Variation with respect to w taking into account the fact that only

components of w normal to the polar axis contribute to the angular momentum

yields

II. 16 w = -XSin a

Variation with respect to n(r) in conjunction with Poisson's

equation yields finally
3/2

V2( = 4e2 (2m( -y) +[xmrSin 8]2)

which is seen to be identical with II. 10.

We see, therefore, that the external rotation of the potential

well leads to the same equation for the density as that obtained from the

displacement of the Fermi sphere in momentum space.

The rotational levels of nuclei so well explained by the cranking

model do not appear in nuclei in the vicinity of the magic numbers. There

are for example no rotational levels in Pb2 08 and it is only as one goes
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away from lead toward the heavier nuclei that rotational levels arise and

the theoretical level spacing is approached. This is also true in the rare

earth region far removed from the magic numbers. We see therefore that

a model based on the external rotation of a potential well has its

greatest utility when applied to situations in which large numbers of

particles lie outside a spherical core. We shall in the following sections

attempt to discover whether this is true in the case of the atom as well.
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III - THE MIXED POSITION - ANGULAR MOMENTUM REPRESENTATION

We use the Green's function formalism introduced by Schwinger 9 for

the quantum mechanical many particle system in the ground state. This des-

cription of the many body system is a time dependent one resembling the

time-independent description of the many body system employing the set of

1, 2,...N particle density matrices. In this formalism the N particle

Green's function

G N(r tI  .rN t rt' .. 't')

is analogous to the N particle density matrix and contains the same informa-

tion about the system.1 0 The Green's functions also satisfy a hierarchy of

equations in which the N particle Green's function is coupled to the (N+l)

particle and the (N-l) particle Green's functions. The procedure to be

adopted in what follows is that of Baraff and Borowitz in which a suitable

representation of the one particle Green's function is expanded in powers

of k.

The hamiltonian for an atom having a nucleus of infinite mass and

charge Ze at the origin surrounded by N electrons is given by

III. la H Ho(ri) + 1/2 Jv(r.-r.)

III. lb HoCr.) _h-2 v?- Ze2
0 - I2m 2. -i

III. 1C v(ir) C 2

1 ri-,nj I

The first of the coupled hierarchy of integro-differential equations

involving the one and two particle Green's functions is
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I1. 2 - Ho( )G,(F -L ) L +-llrt)id -(L - e - -)2-ll lIitli~l
at1  (%-)Et-)

where the coordinates in the arguments of the Green's functions are assumed

to include spin direction as well as spatial position, and summation over

the corresponding spin index is assumed to accompany integration over a

coordinate.

We introduce the Hartree-Fock approximation by replacing the two

particle Green's function by an antisymmetrized product of one particle

Green's functions, i.e.

III. 3 G2(ltl_2t 2:tit ) = Gl(Ltl:jtj)Gl(_ t 2 :jt2)

-Gl(E tlI:E~t2)Gl(f t 2:r,t1 )

If we take note of the fact that in the absence of spin dependent

forces a particle propagates without changing its spin we may insert 111.3

in 111.2 and perform the required summation over spin indices obtaining

111. 4 (ih 3 - Ho(r.1))Gl(rltl:rltl )

at 1
2G 1 1 Lrtl)r(tt)Gt(r(r r )))+ifdE2V(Ll-D2)(2G ~ ,.~ + G, ' '• ' G r t r'CIiL 2 : 21 ili:_ 1" ---i1"-2 1 V"-2 1'-i 1

• : hWr -r')6(t -tl)
-I -
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Following Baraff and Borowitz this may be written as a pair of in-

tegral equations:

III. 5a fK(itl:r_2t 2 ) d r_2 d t 2 G l ( .L2 t 2 r l t l ) = h6(r-')6(t -tl)

where the kernel K(rltl:t 2 ) is defined by

III. 5b K(_ tl:.r2t 2 )

- o + 2idr'v(r-r')Gi(r't:r't) )6(-E 2 ) 6(t l -t 2 )

at1

It is at this point that Baraff and Borowitz effect a transformation

to a mixed position-momentum representation. For the description of an atom

with non-vanishing angular momentum it will prove useful to choose a more

appropriate representation. The importance of the choice of representation

rests on the fact that the many body problem we have formulated is not

solved exactly. If it were, then all the properties of the system, including

of course the angular momentum could be deduced from the solution independent

of the representation of the Green's function. However, one is rarely so

fortunate as to be dealing with a problem that is soluble exactly. If, then,

as we have indicated, we wish to take the point of view that we are going

to specify in our approximate solution something of the internal behavior

and/or structurc of the system that we may know from other sources, we must

use a representation that is appropriate for the inclusion of such additional

information. We introduce therefore the mixed position angular momentum

representation which we have found to be most useful for these purposes.

By analogy to the Fourier transform obtained by multiplying the
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function to be transformed by the solution to the free particle wave equation

in Cartesian coordinates, followed by an appropriate integration, we shall

introduce a transform that makes use of the free particle solutions in

spherical coordinates. The usefullness of this procedure is apparent when one

remembers that a Fourier transform decomposes a spatial description of a

particle into plane waves each corresponding to a particular linear momentum.

The procedure adopted here will produce a decomposition into spherical waves

each one of which carries a particular angular momentum. Since the transform

is somewhat-unusual we shall describe it in detail.

The single particle Green's function is to be transformed as follows:

111. 6 Z;,(Rpw) f G(r t rt )y (r )e (t 1-t 2 )dd(t1-t)
-- 1-- 1-2 2 p~m -1 (t-1drdt-t2

where

I1. 7 Y (r) (2Tr)3/2y// (p) (00 )

p2.m ~ /fr Ztl-/2 n)Z

where J. 1/2are cylindrical Bessel functions, the YZm(6,0)are normalized

spherical harmonics and

III. 8 R = -I + L2
-- 2

is to be held fixed in evaluating the integral defined by the transform.

Since the functions C m and G have their time and energy dependence

related through a Fourier transform, that part of the calculation of the inverse

offers no difficulty. The inverse of the angular momentum dependence of G M

is calculated by multiplying by the complex conjugate of Y and integrating
p £m

over the magnitude of the momentum and summing over all values of k and m.

Thus we have from III. 6

-iW

L- p.m -
iW (tl't )-(ti-t )

Z G((rrt It2 ) (r((')eY ( 1 t2)((jle
"  dr'd(t-t

pzm -2. -l pdpdm(Z1-12)
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The time and energy integrations may be done immediately yielding

for the right hand side of Iii. 9

!ii. 10 2flZ fG (r t'r t') (r)* (r')dr dp
km iL 22 pm-- pm -1 -1

We may now perform the p integration by noting that11

f Jm(kX)Jm(kXo)kdk = 6(x-xo)

independent of the value of m.

The result of the p integration in III. 10 is

4111. 11 (27) m rG(rt' r t') 6(rl-ri)r 2dr y (6 l)Y. (s' ')sino do do(11 -22 1 1iZ l 1 1 11
1

Since the spatial integration is to be performed keeping R constant

there is only one independent angle variable and we may expand the spatially

dependent one particle Green's function as follows:

uv.,
111. 12 G1(r t Ir t T v( ~

12 2 Uv 1 1 1 2 2 uv ,

Expression III. 11 then becomes

Ii 1 ( 4  
(r rl u2

111. 13 (2(rl) r f ( tr t) 6(rl-r{) r2dr Y m(6i0l)Y (e )Yu (e )
uv 1 22 rr' 1 11 zm 11 uv 1 1sinededO

11-T~i 1 1

The spatial integrations may now be performed yielding

Ill. 14 (2-,TK) 4 G Zm(rlttrwtI) Y ' (0'1'W(2 1Tr) Gl(rjt'r't1)
2 mm 1 1122 'm 1 1 2 2
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where use has been made of III. 12 in the last step.

The inverse transform is thus given by

111. 15 G- 2tlr t2 ' 1 f Ckm(Rpw) Y r (tl-t2)dpdw

-- -- )' 2m -- Z **.

The spatial density of the electrons may now be expressed in a

form that displays the usefulness of the mixed position-angular momentum

representation. For the atom with non-zero angular momentum.

III. 16a dp n (Rp) 'P (R)

n(R) =-iG (RtRt+) -IVm f ) - p2 m-

III. 16b n (Rp) -if a (Rw) km Rp) -if £

Equations III. 16 suggest the following physical interpretation; the

quantity n m(R, p) is a density in a phase space that is chara . ,ized by a

momentum subspace with one continuous coordinate and two discrete indices

indicating the symmetry properties of the angular momentum. Physically we

shall interpret nim(R,p) as giving both the spatial distribution as well as

the angular momentum distribution of electrons in the atom.

The mixed Fourier-Hankel transform of equation III. Sa is taken with

respect to r and t -t' keeping R = 4--l r' constant. We obtain
-1 1 1 - 2

LW(t -t')
111. 17 JK(r t r t )dr dt G (r t r't') Y (r )e : 1 1 dr d(t -t')E T (R)

1 1 2 2 2 21 2 211 pkm 1 - 1 1 8 pim

The quantity 'pm
(rI ) may be expanded in plane waves as follows

12
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ip .r

IP. f do e ym (Qp

Inserting III. 17 in III. 18 and interchanging the order of

integration we obtain

_ (t tll)

.f pIt l2t2 )dr2dt2 G,(2t2r ~i)"p~m(rnl)e d-td(t[)tl )8 PL_

iz f dopYm(Qpl)fK(r t 2 r 2 t 2 )dr 2 dt 2 Gl(r 2 t 2 rt )e dr(tf):p daY (aQYKGiz. .. p ZM p (~2~2 t LtL'l i £ p km

where KG is a Fourier transform defined by the above integral. This

relationship between the Fourier transform KG, and the Hankel transform

KG is quite general, i.e.
P=P

III. 20a KG pm =£ f do Y (QD) KG
p~ Z p Zm (-~ KG

p

III. 20b KG = - Ym(Qp) KG
Zn P pm

Baraff and Borowitz have shown that the Fourier transform KG may

be expanded in terms of the individual transforms K and G by means of a dif-

fereritial operator of infinite order which has the structure of an infinite

series of terms each of which contains an explicit power of R. The zeroth

order term is just the product of the individual transforms. In this ap-

proximation therefore III. 19 becomes

-_3
Ill. 21 9_ ' (R)=P_^fd p Ym( ooD p p i ( )GO

8 - p ' 0 ifd Y P)K. p X )
p4 - (iP )
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where explicit use has been made of the expansion in powers of 11 given by

Baraff and Borowitz for both the kernel as well as the one particle Green's

function.

At this point we would like to be able to make some statement as

to the relative significance of the terms in the one particle Green's

function, in light of whatever partial knowledge we may have about the

system. For this purpose we shall invoke certain statistical arguments.

We regard the number of electrons as large and construct a microcanonical

ensemble to represent the system. All possible internal distributions of

angular momentum consistent with the total energy of the atom are to be

regarded as equally likely. A justification of the use of the microcanonical

ensemble for the isolated quantum mechanical system is discussed in detail

in Tolman.

If our partial knowledge of the system is such that we know that

the angular momentum of the system is carried by a single particle, then it

is clear that this can occur in only one way and as we shall see, there is

an unambiguous form of the one particle Green's function that describes this

situacion. On the other hand, if we know the angular momentum of the system

is carried by many particles the situation is not as clear. This is because

there are many possible internal distributions of angular momentum that

will give rise to the same total angular momentum. We are, however, dealing

with an equilibrium state of the atom since we are describing the ground

state and therefore we shall adopt the procedure of choosing the most

probable configuration to represent the system.
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Let us therefore begin by asking what is the most probable con-

figuration resulting from the addition of many angular momenta, corres-

ponding to the situation in which many electrons contribute to the total

angular momentum.

Consider the N electrons each carrying an angular momentum Z.

The resultant angular momentum of these electrons lies between zero and ZN .

If we consider each possible arrangement of these Jlectrons equally probable

then the resultant angular momentum is shown in an appendix to be a random

variable that obeys the central limit theorem. The distribution of the

resultant angular momentum tends therefore toward a Gaussian distribution

centered at zero angular momentum. This however is true for all and

since the distribution of a finite number of random variables each of

which is Gaussian distributed is itself Gaussian, we have the result that

the distribution of resultant angular momentum is peaked at zero angular

momentum.

In order to estimate how the sharpness of the distribution depends

on the number of electrons we note that the various possible vector ad-

ditions of individual angular momenta are equivalent to the various possible

trajectories in a random walk problem. Chandrasekhar 14 gives as the

probability distribution of the sum of a large number N individual

random steps of mean square size j2

_ L2

III. 22 W(L) = exp (Tj-2)

(2N 2] 
3/2
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The variance of the distribution is

111. 23 = N.

while the maximum possible angular momentum is

III. 24 Lmax 
= N /2

We see therefore that the distribution of the resultant angular

momentum becomes more sharply peaked about the origin, i.e., zero angular

momentum with increasing number of particles since

-1N~/2

III. 25 L C =

max

We shall therefore, in attempting to describe the situation in

which many electrons contribute to the angular momentum consider only the

spherically symmetric term in III. 15 and in the sum on the right hand side

of III. 21.

In that case III. 21 becomes

5- 3  Gooo p GoooKo2m
III. 26 p() = -p 7.e J Y m(Qp ) Ko 

= p

where

2 (R)
III. 27 Kom(RPw)=(W.'P-Z(+l)t2 + Ze2 - 2fv(R-r) n, (r)dr) £mR

2m 2mR
2  -7 0

-- 8
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The zeroth order density n oo(R,p) is related to Go o(R,p)

by

III. 28a nooo(Rn) = -if d--Tr e Go o(Rpw)

and

III, 28b noo(R) :f LP- 3 n R poo (R)
00(271) 000 - POO -

We have therefore,

III. 29 a (R'pw) -
00- W-E(Rp2)

to be integrated in the complex w plane. For the case at hand, i.e., an

atom in its ground state the path of integration lies just below the real w

axis from -o<w<p , crosses the axis at w=i and lies just above the

real axis from p<w<- . The constant p is the chemical potential. The

contour is completed by the upper semicircle at infinity. The derivation of

the contour is discussed fully in an appendix to the Baraff and Borowitz

paper.

The result of the integration in the w plane is

III. 30a noo (R,p) = 4pn 3  E(Rp)<p

III. 30b = 0 E(RpZ)<p

The spatial density may be obtained from n (R,p) by means of
000 -
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equation III. 28b which yields

3/2

I1. 31 n (R) 1 (2-)
000- R2

where

-Ze
2

III. 32 (R) : R +2 fv(R-r)n (r)dr
-- -- -- 000 - -

Equation III. 31 in conjunction with Poisson's equation has the

structure of the Sessler-Foley modification of the Thomas-Fermi model.

This is due to the appearance of centrifugal potential on the right hand

side. One may however ask why such a term appears since the Green's

function used in the derivation was taken to be spherically symmetric.

It is present because of the angular dependence of the transform of the

kernel. The question remains however, as to what value of Z is to be used in

III. 31. To bring the model into coincidence with the Sessler-Foley model

we shall choose I such that
J(J+l)E2 = f Z(Z+l)n 2n oo(R)dR

where J(J+l)h2 is the square of the angular momentum of the atom. Thus

has the significance of an angular momentum per particle.

As pointed out by Sessler and Foley, this model corresponds to

spherical electron density executing a rigid rotation. The model does not

yield any of the characteristic properties of the periodic table and the

essentially classical fashion in which the angular momentum appears is

exhibited by the vanishing of the quantum mechanical expectation value of

the angular momentum.
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in the Hartree-Fock approximation the quantum mechanical ex-

pectation value of the angular momentum is given by

III. 33 -ifLimL2(1)Gl(ll'd(l)+ -fLim2L(l)-L(2)(Gl(u ()Gj22')-Gl(21')Gl(12')]d()d(2)i'i2 1 --i

2'-p2

which may be evaluated by the insertion of the form of the one particle

Green's function employed in our derivation of the Sessler-Foley result,

i.e.,

•-_w ( t l-t 2

III. 34 G l(rLtl2t2)= _)e5t1t2dpdw

If III. 34 is inserted in III. 33 the expectation value of the angular

momentum is found to vanish because of the zero eigenvalue of the angular

part of ypo (R).
P00 -

We see, therefore, that if nothing is known about the internal

distribution of the angular momentum we are led to the Sessler-Foley result

as was to be expected on the basis of the Landau and Lifshitz theoram

derived above. We are, however, in possession of a great deal of quali-

tative information about the internal distribution of angular momentum in

an atom. We would therefore be led to expect that if we could include some

of this information we would be led to a better model. In the context

of the present fornalism this amounts to choosing a more appropriate

approximation than G (Rpw) for the Fourier-Hankel transform of the one
00 -

particle Green's function.
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There is a relatively simple form of the one particle Green's

function that corresponds physically to the case of one, two or three

electrons outside a closed shell and has the virtue of yielding the

proper expectation value of the angular momentum. A trivial modification

of the form of this Green's function will be seen to correspond physically

to electrons missing from a closed shell.

The one particle Green's function is taken to be of the form

III. 35a Gl~ll22 G (ltr t G L

l(L~l-Lt2 O(,rtlLt2) l(ltlLt 2 )

where

III. 35b G!(r ir2t2) (Rpw)' (r' )e n
1~0 -l122 (i~Y~o- Poo -l pd

and

L -, n rtIII. 35c G (r t r t ) - L (Rpw) ' (r )e t ) dpdw1 - 1-2 2 (2. )4 .m - pLm -

Since the normalization on the one particle Green's function is

III. 36a -ifG I(ltl:rI t+)drI = N

a suitable normalization on the quantities just introduced is given by

III. 36b -ifG 0 (rltirt! )dr N-n n=0,1,2,3

L
III. 36c -ifGI (ritl:r-1 tl)dr n
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We likewise assume that the two particle Green's function may

be decomposed into

III. 37a G2 (11':22').= G
0 (11':22') + GL (11':221)22 G2 (l:2'

where

2 (11:2 o dRpoo,:Rpoow') (dpddwd2(2;i)8 2 -P-o -1poo -2

and

III. 37c GgL(1121
2

l ,.1 (tl-t1l)-? (t2-t2)
E C (L M mm')fG2(RpLm.R'p'Lm'W')P (r )'Lnr_)e dpdAdwdcJ

(2 71) m mLL 2 -Lm E2)

The CLr appearing in 111.-37 are Clebsch-Gordon coefficients.

In choosing appropriate normalizations for the two terms in

III. 37a, we observe that the normalization of the two particle Green's

function should be

III. 38 ) fG2 (l:22)d(!)d(2) 2
2 22

corresponding to the number of distinct pairs that one may choose from

N objects. We shall therefore choose the normalization of the two terms

in the two particle Green's function as follows:

0

III. 39a (i) 2 G (ll:22)d(l)d(2) (N-n)(N-n-l)
2 2 2

and

III. 39b (df (ll:22)d(l)d(2) -n(n-l)
2 2 2
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This normalization corresponds to the separate anti-symmetrization

of the core and the contents of the outer shell.

If we apply III. 33 to the forms of the oae and two particle

Green's functions chosen here we obtain

111. 40 - 2 L(2)(G (ll'22')+G (n1'22')]d(l)d(2)

2%2

Substituting III. 35 and III. 37 in III. 40 and remembering that

L2-L 2-L 2 = 2L.L 2

we obtain

III. 41 2L(L~l)(-ifC(ll)d(l)) 2L(L+ll-- S(l122)d(l)d(2)

=L(L I)yi2 (n-n(n-l)3
2

We thus obtain a zero angular momentum for the case of no

electrons outside a spherical core and an angular momentum of L(L+l)E2

for the case of either one or two electrons outside a spherical core.

In the case of three electrons outside a core the angular momentum is

seen to vanish corresponding to the fact that the elements of the principal

groups in the fifth column of the periodic table have three electrons

outside a spherical core which combine to give an S state for the ground

state.

Having found a form for the one particle Green's function that

describes one, two or three electrons outside a closed shell and that

yields the proper quantum mechanical expectation value of the angular

momentum we proceed as before to obtain an equation for the electron
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density. Equation III. 31 becomes

p -o -3
111. 42 i~d P Y m(I (o0 Y pm(R)um : B pLm -

In this case the L appearing in the Fourier-Hankel transform is taken to be

the same as that of the term G0 . As before we may evaluate the first

integral obtaining

'f-E(RpL)j Y (R)G (R,ow)
Ii. 43 o Y Lm N 0 )K0G oLm ooo -- Lm- 000

a. 4Trp 4B

In order to evaluate the second integral, we note the relationship

between the Fourier transform and the Hankel transform

III. 20b G (Rpw) z -LY (P )G _(Rpw) 
= LL p)G (PW)

oXP~ p ox, sLm

where the last step was obtained using the explicit form of G1  Using

the expansion of a product of spherical harmonics

III. 44 Y (p Q ) *(Q)=E./-2.1 ooo)C ,,m)YX(m p

where the C are the usual Clebsch-Gordon coefficients. Inserting III. 20b,

III. 44 in III. 42 yields for the second integral in the latter equation

III 45 (Rpw)111. 45 dQ Y. (Q )K CL=Gi  P Lm p 0 o Lm LKOX

G iL Rm Y (R)(woU M, m X
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where

III. 45a E = 1 (
F B (R)
I Lm pXV -

Thus eq. III. 42 becomes

III. 46 G+(Rpw) , GoLm(Rpw)iL E BXJ R)_ (_) _-3

4 p pLm (R) w-E w-E(RpL)

Since 000 is of the order of N times larger than GoLm we may

solve first for the core density in the absence of the outer electrons

obtaining as in III. 29 (the Sessler-Foley model)

III. 47 (Rp,) - 3 4rp
000 w-E(R,pL)

Since the functional variation of a 000(Rpw) for N-n particles is the same

as for the N in the Sessler-Foley model we may write III. 46 as

-- E pp (R)

o~in -

and

III. 48b Go(Row) N-n n34fp
000 -' 1F- ,

Integrating as before over the complex energy plane we obtain

(R)
III. 49a n (Rop) = 4fp- 3n * )Lm

oLin- N T4riL B "'Y (R)
ALm P 4
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III. 49b noo(R,p)  = 11-_2 . 47pfi-3 ; E < p
000- N

The spatial density for the core is obtained by integrating over

momentum yielding

Pmax 3/2

II. 0 R)=f dp Ni~~rf3 i'() - L(L+l)2
000 - o(2iT) 1 N 2 O -

2

to lowest order in h.

We may obtain a spatial density from III. 49a that corresponds

to what one might expect on physical grounds by approximating the denominator

by TP (R) , In that case

2L+3
Pmax p 2 L 2(2 m( _)L(L+l)h 2

II1. 51 n (R)f 4riN 3np 'pLm'pLm dp=R  L2 nm oCpo 2 2 (2L+3)h 2 L 3  N

to lowest order in h. It is seen that in the case of vanishing angular

momentum the present case reduces to the Thomas Fermi model.

In the event that the atom may be approximately described by

one, two or three electrons outside a closed core carrying the entire

angular momentum we have seen that it is possible to construct a form for

the one particle Green's function that in the Hartree-Fock approximation

leads to the proper quantum mechanical expectation value of the angular

momentum. The equations for the spatial electron density that are

recovered from this form for the Green's function differ from those obtained

by Sessler and Foley.
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We may treat the cases of one, two or three electrons missing from

a closed shell by slightly modifying our previous procedure. We let n - -n

in III. 36 and III. 39 thereby obtaining for the expectation value of

the angular momentum in III. 41

I1, 52 L(L l)n2 (-n _ n(nl))
2

Then once again for no electron missing from a spherical core

we obtain a vanishing angular momentum. For the case of either one or two

electrons missing from a spherical core we obtain the proper angular momen-

tum with n = -1 and n = -2 respectively. In the case of three electrons

missing from a closed core we return once again to column five of the

periodic table with a ground S state.
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IV. QUADRUPOLE COUPLING CONSTANT

The present model has been derived not in an attempt to calculate

detailed atomic properties but rather to illustrate that a statistical

model including available information about the internal behavior of the

system will yield better results. We have therefore chosen to compare

a calculation based on the present model with a similar one done by Sessler

and Foley

The quantity to be calculated is the quadrupole coupling constant

IV. 1 q = f 3cos2e-l n(R)dR
R
3

The importance of this quantity lies in the fact that the quadrupole

moment of the nucleus is not measured directly but rather througha quadrupole

splitting in atomic spectra. The relationship between the quadrupole coupling

constant and the measured quadrupole splitting is

IV. 2 hb = e2 qQ

where Q is the nuclear quadrupole moment and b is the measured frequency

of the splitting.

For the case of the quadrupole coupling constant of the halogens,

we may consider the core density to a first approximation to be spherically

symmetric, the only contribution to the quadrupole coupling constant coming

from the missing electron. Since the sign of the second term in III. 35a

will differ in the case of a single electron missing from a closed shell

as compared to a single valence electron, we see that this model is capable

of accounting for a sign change in the quadrupole coupling constant at a

closed shell whereas the Sessler-Foley model was not.
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Neglecting the centrifugal potential in III. 51 we obtain for

the case of the halogens

<3 cos 2 -1> P 2L23
IV. 3 q = f R2 -1  2

2-n2 rl2 L+3(2L+3)Z Rmin

The expectation value of 3cos 20-1 in the ground P3/2 state of the

halogens is -2/5. Noting that for the present case L=l and transforming

to universal Thomas-Fermi coordinates we obtain

I v .42 q =Z 5 / 3

5V2 - a - j X5/2(x)x3/2 dx

min

In order to arrive at a reasonable lower limit for the integration

we note that the lowest limit of the validity of the Thomas-Fermi model

is ao/Z 6 , which is the radius of the first Bohr orbit in the field of a

nucleus of charge Ze. That very little is lost by cutting off the integral

at this point can be seen by considering what fraction of the charge of an

electron in the lowest p state in hydrogen lies within a sphere of radius a .

The charge inside a sphere of radius a in this case is approximately .004e

which is larger than the amount of charge found within the first Bohr

orbit for higher p states and for higher angular momentum states as well.

In addition, for higher Z this fraction decreases as Z5.

Using a0/Z as a lower limit we obtain for the quadrupole coupling

constants of the halogens

qcao0
3 = -2.4

3
qBrao3 = -21.

qIao3 = -51.
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These figures are within an order of magnitude of the accepted

values, the value for chlorine being in good agreement with the accepted

value and that for iodine six times too large. The value of Iqj however

is seen to increase with Z in contrast to the Sessler-Foley model where it

varies as Z- 2 13 .

The primary difficulty in calculating the quadrupole coupling

constant in any kind of a Thomas-Fermi model is that the density is related

to the self-consistent potential and not to the square of a one-electron

wave function. In the vicinity of the origin the square of the one-electron

wave function in all but S states is small, in contrast to the self-

consistent potential which becomes increasingly Coulombic in character as

one approaches the origin. However, it is precisely this region near

the origin that is weighted most heavily by the quadrupole coupling

constant.
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V. SUMMARY AND CONCLUSION

We have shown how the inclusion of additional information in a

statistical model can lead to more desirable results. In particular

in the case of the atom with angular momentum the specification of the

internal structure leads to a model that differs from the Sessler-Foley

result.

We believe that the present model offers a better starting form

for the density in detailed self-consistent machine calculations of

atomic structure. In addition, the model should prove useful in investigat-

ing at least the qualitative properties of the atom that vary in the

characteristic way of the periodic table.

It is also anticipated that the approach used in the present paper

may be utilized fruitfully in any self-consistent statistical model of

the nucleus.

More generally, however, we feel that an statistical treatment

of a physical system may be improved if a suitable formalism is found

in which empirical information about the system may be inserted.



37

APPENDIX

THE CENTRAL LIMIT THEOREM AS APPLIED TO THE ADDITION OF MANY ANGULAR MOMENTA

The various possible values of the resultant angular momentum of Nz

electrons each carrying an angular momentum k are given by the absolute

value of the algebraic sum of NZ terms each of which may take on the 2Z+l

integral values between 2 and -Z. In order to determine the distribution

of the resultant angular momentum we make use of the central limit theorem

which states that the sum of n random variables of mean zero tends to a

Gaussian distribution provided

a) the random variables possess absolute moments of

order 2 + 6 >2

and

b) the quotient

n (i)n
Z 2+6

Wn = i=l -> 0
1+6/2 nw

B
n

where p(i) is the ( 2 +6 )th moment of the ith variable and Bn is the mean

2+6

square fluctuation of the sum ot the first n variables, i.e., the mean square
n

fluctuation of the quantity E ki
i=l

For a fixed Z the distribution function is

f(k) 1 .
22.+l Z m

The third absolute moment exists since

S= Elk 3l(k) = Z 1 1k16mk
k km 2 1'+l

Z 2
1 r im3i _2 Z m3 2 2. ( 1)+

2 1 m=_- £ m=0 22i
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The mean square fluctuation of k. is1
2k = k

2 - 2k

Ak~ki

S k i i -k,m m. - = 7 2£9i 0

ki E ki f(ki) Z k 6ki =

k k,m m=-Z

2 E m2  Z(Z+!)
2k lm=O 3

i Thus k - 3(£+I )  and

B nAk.2  nZ(Z+l)

13

The quotient w therefore becomes

2 (P(z+l) 2

W 22 *n
- 2Z+l ZZ )3/2 n3/2

which goes to zero as n- 1 2 with increasing n.

Since the distribution of angular momentum satisfies the central

limit theorem it tends in the limit of large n to a Gaussian distribution

which was to be shown.
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